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Supporting Information Text

Results

Clustering the dendrogram of Fig. 3d. A similarity matrix was created with entries equal to the distance between each pair of
rows of the heatmap in Fig. 3d, where the distance metric is the 2-norm of the vector of the differences of the three comparable
entries (the diagonal elements of every row are ill-defined and cannot be compared). The five rows of the heatmap then were
hierarchically clustered based on this similarity matrix using the scipy.cluster.hierarchy.linkage Python function, and
the results of this clustering were plotted as a dendrogram with the scipy.cluster.hierarchy.dendrogram Python function.

Replacing 100% colonization odds by 99.99% versus 99%. Any independent colonization model in which the colonization
probability of a species is 100% will predict that likelihood of that species not colonizing is precisely 0. This model would
subsequently make poor predictions for our system, since in our experiments it was common for even the strongest colonizers to
fail to colonize some of the time. To avoid these divergences in the log-likelihood, we replaced the colonization odds of species
that colonized 100% of the time by 99.99%. The only model affected by this modification is the single-species model, in which
LP, LB, and AO all colonized 100% of the time. Since the choice of the upper bound was arbitrary, we also examined the
performance of the single-species model when the upper bound was set to 99%. Whether the upper bound was set to 99% or
99.99%, the single-species model is substantially outperformed (in terms of number of combinations reproduced, log-likelihood,
and BIC scores) by the two-species, max-likelihood, and both interaction models. Specifically, the 99% model reproduces 10 of
the 31 combinations (p > 0.05, multinomial test), has a log-likelihood of -483, and has a BIC score of 965, while the 99.99%
model reproduces 8 of the 31 combinations, has a log-likelihood of -1023, and has a BIC score of 2046.

Parameter estimates for the interaction model. The interaction parameters αLL, αLA, αAL, and αAA encode interactions
between Lactobacillus and Acetobacter species. These parameter values were determined by maximizing the likelihood across
all experiments, which yielded αLL = 2.4, αLA = 2.0, αAA = 2.6, and αAL = 0.5. Therefore, in the interaction model
the colonization probabilities of Lactobacillus species are lower in the presence of any additional species. The colonization
probabilities of Acetobacter species are lower in the presence of other Acetobacter species and are higher in the presence of
Lactobacillus species. A given interaction strength α will influence the colonization probabilities of moderate colonizers (i.e.,
those that colonize 20% − 60% of the time) more than strong colonizers due to the functional form of |pi − pα

i |, which has a
single maximum at pi = α1/(1−α). For the interaction parameters we consider (0.5 < α < 2.6), |pi − pα

i | is greatest when pi is
between 0.2 and 0.6, and decreases as pi increases further. For example, in the interaction model the colonization probability
of AP (the weakest colonizer) decreases by 30 percentage points when it is in the presence of other Acetobacter species, yet the
colonization probability of LP (the strongest colonizer) decreases by only 2 percentage points when it is in the presence of
other Lactobacillus species. Colonization probabilities and interaction parameters in the interaction model were fit using the
SLSQP method in the scipy.minimize Python function.

Leave-k-out cross-validation. To examine whether the max-likelihood and interaction colonization models are robust to
subsampling of data, we performed leave-k-out cross validation, in which models are fit with data from 31 − k randomly selected
combinations and then are tested on their ability to predict the colonization outcomes of the remaining k combinations for
k = 1 and 15. To generate statistics we repeat this random partitioning process 1,000 times for k = 15, and for k = 1 we
exhaustively consider all 31 training and test sets (1). For each model realization, we computed the log-likelihood of that model
generating the training data (composed of 31 − k combinations) and generating the test data (composed of k combinations).
Fig. S3 shows the average log-likelihood per combination (defined as the log-likelihood over a set of combinations divided
by the number of combinations in that set) for both the training and test data. As expected, we find that models perform
better (i.e., possess larger average log-likelihoods per combination) on training data than on test data. For smaller k, model
performance becomes more similar on training versus test data, with average log-likelihoods varying by less than 15% for both
the max-likelihood and interaction models when k = 1.

Synthetic data generation and convergence of parameter estimates. To estimate how much data would be required to infer
colonization probabilities pi and deviations ∆p j(i) in colonization probabilities of more diverse microbiomes—murine or human
gut microbiomes, for example—we generate synthetic colonization data and measure how quickly our estimates p̂i and p̂ j(i)
converge to their ground-truth values pi and p j(i). We consider a hypothetical 20-species microbiome and analyze a scenario
in which we obtain presence/absence data from colonization experiments of 10-species subsets of the 20-species microbiome.

Synthetic pi and ∆p j(i) parameters are created from bare colonization probabilities p̃i (based on the measured colonization
odds of the five core bacterial species discussed in the main text) and interaction parameters α̃ij (which dictate how the
colonization of species i is affected by the presence of species j). The bare colonization probabilities p̃i are generated for
i ∈ 1, . . . , 20 by taking random convex combinations of the measured colonization odds of the five core Acetobacter and
Lactobacillus species discussed in the main text (i.e., for each i ∈ 1, . . . , 20, p̃i = R · P where R is a five-element vector of
random numbers between 0 and 1 with unit sum and P is the vector of observed colonization odds of LP, LB, AP, AT, and
AO). Figure S4 shows these bare colonization probabilities p̃i as red dots.

To generate interactions, we assume that this 20-species microbiome is composed of four five-species genera (labeled A, B,
C, and D), and we further assume that the colonization probabilities are affected by interactions such that, assuming species i
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is in genus A, its colonization probability is

pi = p̃
α̃

(nA−1)
AA α̃

nB
ABα̃

nC
ACα̃

nD
AD

i , [1]

where nJ indicates the number of species of the 10-species microbiome from genus J . pi is similarly defined when i ∈ B, C, or
D. We choose the interaction matrix

α̃ =

1.3 1 1 1
0.7 1.3 1 1.3
1 1.3 1.3 1.3

1.3 1 1 1

 , [2]

where each element α̃ij is given by the ith row and jth column, and where A, B, C, and D correspond to i or j = 1, 2, 3, and
4, respectively. In all, the bare colonization probabilities p̃i and interactions α̃ are used to generate synthetic colonization data
from which colonization probabilities pi (black dots in Fig. S4) and deviations ∆p j(i) in colonization probabilities (heatmap in
Fig. S4) may be inferred.

Figure S5 shows the expectation of the average absolute deviations E
[

1
M

∑
i
|p̂i − pi|

]
and

E
[

1
M2

∑
i,j

|p̂ j(i) − p j(i)|
]

as a function of the number N of 10-species combinations tested. These expectation values describe
on average how close each colonization probability or deviation in colonization probability is to its ground-truth value, and the
expectation is taken over 100 realizations of N 10-species experiments. We consider scenarios in which each experiment contains
12, 24, 48, or 96 replicates. The quantity E [|p̂i − pi|] scales as the standard deviation of p̂i − pi (assuming the distribution
of p̂i − pi is approximately normal (2)), which scales as 1/

√
Q1 where Q1 is the number of trials in which species i is fed.

Similarly, |∆p̂ j(i) − ∆p j(i)| scales as 1/
√

Q2 where Q2 is the number of trials in which both species i and species j are fed. On
average, for N random 10-species combinations in a 20-species microbiome, Q1 = N/2 and Q2 = N/4. Therefore, the average
absolute deviations in the colonization probabilities and the deviations in colonization probabilities both scale as N−1/2, as
illustrated by the black line in Fig. S5.

Materials and Methods

Pooling colonization data from biological replicates. To determine whether there was any systematic variation between any
of the biological replicates, we investigated whether the outcomes observed for each 12-fly replicate are consistent with the
outcomes of the corresponding aggregate 48-fly experiment. We used a multinomial test to calculate the probability of
obtaining the colonization outcomes of each 12-fly replicate with a null multinomial distribution characterized by the empirical
colonization outcomes of the corresponding 48-fly experiment. Figure S6 summarizes the results of these multinomial tests,
showing for each of the 4 biological replicates the p-values of generating the colonization outcomes of the 31 combinations.
Based on this analysis we find that the data are slightly skewed, with multinomial tests only indicating significant deviations
from the null multinomial distribution for experimental combinations AT/AO in replicate 1 and AP/AT/AO in replicate 2.
Despite the significant deviation of these two 12-fly replicates, to obtain greater statistical power we use pooled colonization
data from all replicates and did not distinguish between replicates in our analyses.

Scaling of confidence intervals with increasing sample size. The mean size of the 95% confidence intervals in Fig. 2 of the
main text is 21 percentage points. When the number of samples N is sufficiently large to approximate a binomial distribution
by a normal distribution, the standard deviation scales as N−1/2. Roughly, this implies that performing 100 times as many
experiments (i.e., sampling 4800 flies per combination) would reduce confidence intervals 10-fold (giving a mean confidence
interval width of 2 percentage points).
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Fig. S1. Successfully colonized bacteria colonize at an abundance substantially higher than the experimental limit of detection. Each data point is the bacterial
abundance (measured in colony-forming units (CFUs)) of a biological replicate of a bacterial combination. When bacteria fail to colonize a fly (beyond the detection limit), their
abundance is marked zero. A random subset of 10% of data points are plotted.
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hypothetical null model for two-species colonization odds:
[7/12 A and B colonize, 2/12 A only, 2/12 B only, 1/12 neither]

probabilities of the most likely 12-sample outcomes
(200 of the 455 possible outcomes are plotted here)

[7, 1, 4, 0] (46% as or less likely)

[6 AB, 3 A, 2 B, 1 neither] (68% of outcomes as or less likely)

[3, 5, 2, 2]
(2% as or less likely)

Fig. S2. Explanation of the multinomial test, which tests whether an observed outcome is likely, assuming a null multinomial distribution. In the main text we test six
null models, which each predict the distribution of colonization outcomes for each combination of bacteria, and are tested against the experimentally measured outcomes (48
flies per bacterial combination). To evaluate the likelihood of a particular N -element outcome with the exact multinomial test, compute the probability of all possible N -element
outcomes, and sort the outcomes according to their probabilities. Then, sum the probability of the outcome of interest and the probabilities of all of the less-likely outcomes (i.e.,
integrate from the outcome of interest to the right in the figure). This integrated area is the p-value, which is how likely an observed outcome (or any less likely outcome) is
under a particular null model.
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Fig. S3. Synthetically generated colonization probabilities pi and deviations ∆p j(i) in colonization probabilities. Red dots: randomly generated bare colonization
probabilities p̃i. Black dots: colonization probabilities pi inferred from data from numerous 10-species microbiomes (i.e., probabilities that have been influenced by interactions
between species). The ground-truth quantities pi (black dots) and ∆p j(i) are inferred from 200 synthetic experiments of 10-species microbiomes in which each experiment
consists of 500 replicates.
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Fig. S4. Estimation of colonization probabilities pi and deviations ∆p j(i) in colonization probabilities as a function of the number N of 10-species combinations
tested for a synthetic 20-species microbiome. For each number N of combinations tested, we compute the respective average absolute deviations 1

M

∑
i

|p̂i − pi| (solid

curves) and 1
M2

∑
i,j

|∆p̂ j(i) − ∆p j(i)| (dashed curves) of estimators p̂i and ∆p̂ j(i) inferred from N 10-species combinations and ground-truth quantities pi and

∆p j(i). We estimate the expected values of these average absolute deviations by averaging over 100 synthetic experiments of N 10-species microbiomes, in which each
experiment consists of the number of replicates indicated by the legend.
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max-likelihood model (68% CI)

interaction model (68% CI)

Fig. S5. Leave-k-out cross validation for k=1 and 15. The max-likelihood (black circles) and interaction (red triangles) models are fit to training data from 31 − k of the
combination experiments, then evaluated on their ability to predict the outcomes of these 31 − k combinations (train data, left) and the remaining k combinations (test data,
right). Symbols indicate averages and error bars indicate one standard deviation (from complete sampling for k = 1, and 1,000 random train/test partitions for k = 15).
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Fig. S6. Multinomial tests across replicates for each combination of fed species. For each of the 31 combinations of fed species, the probability of observing the
colonization outcome of each 12-fly replicate using a null multinomial distribution characterized by the pooled 48-fly data is plotted. Solid horizontal line: p = 0.05. Dashed line:
Bonferroni-corrected significance level of p = 0.05/(31 ∗ 4) = 4 ∗ 10−4 which accounts for multiple tests (3).
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Table S1. Log-likelihood of independent colonization models for experiments of each diversity.

independent col-
onization model

log-likelihood
(diversity-1
experiments)

log-likelihood
(diversity-2
experiments)

log-likelihood
(diversity-3
experiments)

log-likelihood
(diversity-4
experiments)

log-likelihood
(diversity-5
experiments)

uniform -31 -136 -228 -151 -36
single-species -4 -201 -536 -202 -79
two-species -10 -73 -164 -67 -15
max-likelihood -13 -76 -148 -67 -14
interaction (div-2) -11 -49 -138 -78 -17
interaction (all) -8 -54 -109 -70 -13
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